The Discrepancy in Oxygen Evolution Reaction Catalyst Lifetime Explained: RDE vs MEA - Dynamicity within the Catalyst Layer Matters

نویسندگان

چکیده

This study reveals the source of discrepancy between lifetime oxygen evolution reaction (OER) catalysts determined by rotating disk electrode (RDE) measurements vs that obtained in a membrane assembly (MEA) an electrolyzer. We show accumulation microscopic bubbles pores electro-catalyst layer during OER takes place both RDE and MEA measurements. However, this was found to be much more significant measurements, where shielding almost all catalyst active sites gas leads rapid performance deterioration. decrease performance, albeit largely reversible, also induce irreversible degradation, which could avoided if is prevented. type artefact results vastly under-estimated lifetimes experiments, resulting values are orders magnitude shorter than those using hypothesis for will proposed. Therefore, electrochemical cells with liquid electrolytes not reliable determination. paper 236 presented at Atlanta, Georgia, Meeting Society, October 13–17, 2019.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalency-reinforced oxygen evolution reaction catalyst

The oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied extensively because of their high activity for the oxygen evolution reaction; however, they lack stability, and an effective solution to t...

متن کامل

Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting.

Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity c...

متن کامل

Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.

Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst red...

متن کامل

DIFFUSION AND REACTION WITHIN A SHAPED NICKEL PEROVSKITE CATALYST

  Abstract : In this study, we prepared a LaNi0.3Al0.7O3 perovskite catalyst using a sol-gel related method (with prop ionic acid as a solvent) for use in the methane dry reforming reaction to produce synthesis gas. We defined the catalyst structure on the basis of X-ray diffraction analysis and measurements of the specific surface area and particle size distribution. The mixed oxide structure ...

متن کامل

Structure-activity correlations in a nickel-borate oxygen evolution catalyst.

An oxygen evolution catalyst that forms as a thin film from Ni(aq)(2+) solutions containing borate electrolyte (Ni-B(i)) has been studied by in situ X-ray absorption spectroscopy. A dramatic increase in catalytic rate, induced by anodic activation of the electrodeposited films, is accompanied by structure and oxidation state changes. Coulometric measurements correlated with X-ray absorption nea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Electrochemical Society

سال: 2021

ISSN: ['0013-4651', '1945-7111']

DOI: https://doi.org/10.1149/1945-7111/abdcc9